加替沙星的拉曼、红外光谱和密度泛函理论研究

徐 笛,范 雅,辛敏思,刘春宇,张 烨,蔡红星*

长春理工大学理学院, 吉林 长春 130022

摘 要加替沙星作为第四代氟喹诺酮类抗生素被大量的使用,在人体以及家畜体内会有药物残留,危害 每个人的生命健康。为了避免人体二次摄入,能够快速检测肉制品中是否含有加替沙星残留的方法尤为重 要。为此,进行了振动光谱和密度泛函理论研究,以期为加替沙星的振动光谱检测与鉴定提供基础数据,为 其在药品检测领域的应用提供参考。具体研究内容和结果如下:第一步以密度泛函理论(DFT)为基础,构建 加替沙星分子空间结构,利用 B3LYP/6-311+G(d)基组优化结构并计算其理论拉曼光谱与红外光谱。理论 计算结果发现加替沙星分子在3700~2800与1800~400 cm⁻¹范围内具有明显的拉曼与红外光谱。理论 计算结果发现加替沙星分子在3700~2800与1800~400 cm⁻¹范围内具有明显的拉曼与红外光谱,前者主 要是官能团上键的振动,后者为指纹区上键的振动。由于两种光谱信息互补的优越性,首先通过对比理论拉 曼光谱与红外光谱,标记出同时具有两种或只具有一种振动活性的振动峰频率,结合 Gaussian view 显示加 替沙星分子中每个键对应的振动频率进行全面的归属,同时给出加替沙星分子的键长、键角和二面角等空 间结构参数。第二步通过实验测量了加替沙星(Gatifloxacin, Gati)的自然拉曼光谱(NRS)与红外光谱(IR)。 理论计算结果误差由频率校正因子 0.977 修正,再与实验数据相比较,峰值波数相差大多在 0~10 cm⁻¹范 围内,计算结果与实验数据基本一致。

关键词 加替沙星; 拉曼光谱; 红外光谱; 密度泛函理论 中图分类号: O433.4 文献标识码: A DOI: 10.3964/j.issn.1000-0593(2020)05-1372-05

引 言

加替沙星(Gatifloxacin, Gati)是由日本杏林制药株式会 社首创的新 6-氟-8-甲氧基喹诺酮类外消旋化合物,是第四代 氟喹诺酮类药物。主要用于由敏感病原体所致的轻、中度感 染性疾病,因其广谱、高效、低毒的优越性,受到国内外广 泛关注并使用。

加替沙星的分子量为 375.39, 分子式 C₁₉ H₂₂ FN₃O₄, 危 险标识码 Xn,属于有害物质。除了临床使用有诸多禁忌外, 使用后还可能存在药物残留,危及健康。所以快速检测鉴定 便尤为重要。目前常用的主要有高效液相色谱法(HPLC), 荧光光度法等。但 HPLC 法的实验成本高,样品前处理较为 复杂,液相色谱仪价格及日常维护费用比较昂贵,不利于实 现快速检测。

拉曼光谱与红外光谱法具有无损快速、检出限低、且光 谱信息互补的优越性,越来越多的在食品、药品检测中得到 应用。密度泛函理论(density functional theory, DFT)是计算 振动光谱的一种理论方法,其优势在于不明显增加计算量的 同时,又考虑到了电子相关^[1-2]。因其能够直观反应分子振 动信息,是量子化学计算常用的方法^[3-4]。目前以密度泛函 计算为基础、与拉曼光谱相结合来分析物质结构信息的研究 工作在文献中多有报道^[5-6]。但还没有关于加替沙星的 IR, Raman和 DFT 的比较研究。

1 实验部分与理论计算

加 替 沙 星 选 用 阿 拉 丁 试 剂 官 网 的 分 析 纯 药 品 (按 $C_{19} H_{22} FN_3 O_4$ 计,含量>98%); LabRam HR Evolution 型拉 曼光谱仪(HORIBA 公司),选择 532 nm 激光为激发光源, 激光输出功率为 31.675 mW,扫描时间 10 s,探测器采用研 究级大芯片尺寸空冷 CCD; Thermo Scientific Nicolet iS50 型 傅里叶红外光谱仪,光谱分辨率 4 cm⁻¹,加替沙星粉末由 KBr 压片处理,扫描 32 次。

加替沙星的理论计算采用 Gaussian 09^[7]软件包,分子构型由 Gaussian view 5.0 构建。由于加替沙星分子主要由 C,

e-mail: 2240034076@qq. com

收稿日期: 2019-04-12,修订日期: 2019-08-19

基金项目:国家自然科学基金青年科学基金项目(4140109)资助 作者简介:徐 笛,1994年生,长春理工大学理学院硕士研究生 *通讯联系人 e-mail; ciomsz@126.com

H,O和N等轻元素构成,而Beckes 三参数混合模(B3LYP) 泛函在轻元素构成的分子计算中被广泛应用^[5-6],故利用 B3LYP 泛函来算加替沙星的拉曼光谱与红外光谱。

首先利用 B3LYP/3-21G 基组对初始结构进行粗优化, 在得到的优化结构的基础上,选择 B3LYP/6-311+G(d)基 组进行再优化并计算拉曼与红外光谱。理论光谱的频率修正 选择 6-311+G(d)基组的校正因子 0.977^[8],修正后再与实 验数据相比较。计算结果无虚频,说明得到的是稳定结构。 优化后得到的加替沙星分子结构和各个原子的名称与编号如 图 1 所示。同时给出加替沙星分子优化后的空间几何参数, 包含键长、键角和二面角,详见于表 1。图 2 给出 Gati 分子 的理论拉曼光谱(a)与红外光谱(b)的对比;而理论拉曼光谱 (c)与实验拉曼光谱(d)的对比如图 3 所示出,理论红外光谱 (e)与实验红外光谱(f)的对比如图 4 所示。

图 1 在 B3LYP/6-311+G(d)基组优化后加替沙星结构 Fig. 1 Optimized structure of Gatifloxacin at B3LYP/6-311+G(d) levels

2 结果与讨论

2.1 Gati 分子的空间几何结构

通过 Gaussian09 优化后的 Gati 分子为三维非平面结构。 如图 1 所示, Gati 分子结构主要由以喹啉环为主体, 1C 上连 接一个哌嗪环, 2C 与 33N 上分别连接一个甲氧基与环丙基, 9C 上连接一个羧基; 哌嗪环 14C 上连接一个甲基。从表 1 中 1C-2C-3C-4C 二面角为 9.381 096 0°、7C-9C-10C-33N 二面角为-7.809 60°等发现喹啉环不是平面几何结构;

表 1 加替沙星优化后的几何参数 Table 1 Optimized geometrical Parameters of Gatifloxacin

Tag	Symbol	Bond	Bond	Dihedral		
		length/Å	angle/(°)	/(°)		
1	С					
2	С	1.415 783 6				
3	С	1.416 328 2	121.273 103 6			
4	С	1.408 926 4	119.441 884 5	9.381 096 0		
5	С	1.397 802 9	119.229 618 3	-7.0648590		
6	С	$1.367\ 051\ 2$	120.046 886 7	1.002 520 2		
7	С	1.487 827 0	122.810 125 7	169.239 991 8		
8	Н	1.083 368 8	118.898 387 2	179.196 628 5		
9	С	1.467 713 9	113.576 035 6	-2.6216710		
10	С	1.369 099 0	119.114 276 0	11.295 080 6		
11	Н	1.079 859 1	118.872 307 0	170.746 014 4		
12	С	2.481 626 7	96.315 787 2	-161.0951437		
13	С	2.496 508 5	60.590 118 3	-144.721 702 6		
14	С	1.530 900 1	132.542 844 4	169.683 486 6		
16	С	1.530 683 1	79.6021788	156.811 513 4		
17	Н	1.095 692 5	112.084 688 2	-95.8114423		
18	Н	1.095 583 1	109.051 619 3	-76.4462266		
19	0	1.380 716 7	117.168 818 1	177.132 838 0		
20	Ν	1.386 419 3	120.384 981 4	178.446 934 6		
21	Ν	1.468 730 5	113.313 697 0	45.630 521 1		
22	Н	1.012 925 1	110.781 157 0	96.318 510 5		
23	С	1.527 308 0	111.490 575 4	-153.0144483		
24	Н	1.092 934 3	110.691 821 2	-58.2710387		
25	Н	1.094 527 9	111.359 244 4	63.009 603 2		
26	Н	1.093 653 7	110.5257202	-177.257 948 0		
27	F	1.357 508 6	118.326 115 4	178.402 047 1		
28	Ο	1.222 374 8	121.181 362 9	177.818 215 2		
29	С	1.475 858 4	121.702 085 1	-172.5570545		
30	Ο	1.378 920 7	112.064 395 3	-171.8230358		
31	Н	0.968 568 4	106.162 008 7	-179.185 872 0		
32	0	1.203 709 4	127.218 205 5	8.933 182 4		
33	Ν	1.356 365 5	125.8237997	-7.8096019		
34	С	1.469 934 8	117.916 815 0	155.698 519 1		
35	С	1.505 912 5	121.629 264 1	-34.6323187		
36	С	1.503 685 7	122.722 146 6	38.384 929 3		
37	Н	1.075 524 5	110.9974788	-177.4058308		
38	Н	1.084 336 4	118.101 367 3	5.678 975 3		
39	Н	1.084 278 0	117.840 076 1	-138.2279019		
40	Н	1.084 221 8	117.274 868 6	139.832 999 6		
41	Н	1.083 941 4	119.389 112 4	-3.9919120		
42	C	1.435 256 9	115.541 093 7	-113.1694966		
43	Н	1. 089 419 8	106. 161 485 9	175.104 955 7		
44	Н	1.092 181 9	111, 626 105 5	-65.6742196		
45	Н	1.093 210 4	110, 689 670 7	56, 195, 432, 8		
46	Н	1.093 099 7	109. 412 342 9	167.3617927		
47	Н	1. 094 195 2	133, 114 986 5	50, 205 592 8		
48	Н	1. 090 983 3	82. 544 709 6	-155,450,297,5		
49	Н	1. 102 707 8	106. 957 897 5	-34, 615, 660, 9		
	• •			0 0 - 0 0 0 0		

14C-21N-16C-13C 二面角为-28.671 47°、13C-20N-12C-14C 二面角为-33.357 11°等证明哌嗪环同样不是平 面环结构。

2.2 光谱分析

通过 Gaussian view 5.0 观察 Gati 分子理论拉曼与红外 光谱各谱峰的振动形式,对其振动模归属进行指认,整理归 纳于表 2。表中前 2 列分别是实验测得与 DFT 计算所得的红 外光谱各谱峰的振动波数,中间2列分别是实验测得与DFT 计算所得的拉曼光谱各谱峰的振动波数,每个谱峰所属的振动模式均在第5列中给出。

表 2	加替沙星理论与实验振动频率(cm ¹)与归属	

Table 2	Theoretical and e	experimental	vibrational	frequencies	(cm^{-1})) and assignments of Gatifloxacin
---------	-------------------	--------------	-------------	-------------	-------------	-----------------------------------

IR	DFT-IR	NRS	DFT-RS	Assignments
3 441	3 661		3 661	v(30O—H)
	3 187	3 218	3 187	ν(34C—H) ν _{as} (35C—H 36C—H)
		3 168	3 169	$\nu(10C-H) \nu_{as}(C-H)C_3H_5$
	3143		3134	$\nu(15C-H) \nu_{as}(C-H)C_3H_5$
3 078		3 079	3 055	$\nu_{\rm s}(36{\rm C-H}){\rm C}_3{\rm H}_5$
	3 028			$\nu_{as}(12C-H 42C-H) \nu_{s}(23C-H)$
3 012	3 011	3 016	3 011	$\nu_{as}(16\mathrm{CH})$
	2 993			$\nu_{as}(13C-H) \nu_{s}(16C-H)$
2 976	2 958	2 973	2 958	ν _s (12C-H 13C-H 16C-H 23C-H)
2 939	2 940	2 937		ν(16C—H) ν _s (12C—H 13C—H)
2 842	2 870		2 870	v(14C—H)
	1 771		1 771	$\nu(7C=280\ 29C=320)\ \sigma(30O-H)$
1 636	1 656		1 656	$\nu_{as}(C-C)_{au1}$ $\nu(7C=280)$
1 616	1 613	1 614	1 613	$v_{\rm c}$ (C—C) _{aut} ρ (SC—H 10C—H)
		1 587	1 586	$v_{ec}(C=C) = v(7C=O) = o(5C-H + 10C-H)$
1 548	1 553	1 531	1 534	$\gamma_{as}(C = C) = \rho(C = H) C_2 H_5$
1 0 10	1 472	1 477	1 498	$\sigma(12C-H 13C-H 16C-H 21N-H)$
1 447	1 446	1 450	1 446	$\sigma(C-H)C_2 H= \nu(C-C)$
* * * * *	1 410	1 396	1 410	$a(34C-H)a(12C-H)\sigma(36C-H)$
1 393	1 384	1 365	1 358	$\omega(C-H)$
1 323	1 331	1 348	1 332	w(13C-H) = 16C-H) = (18C-H) = 30O-H)
1 020	1 001	1 324	1 297	$\omega(C-H) = \alpha(10C-H 30O-H)$
1 281	1 278	1 276	1 270	$\tau(12C-H 13C-H 16C-H)$
1 201	1 2/3	1 2/2	1 210	$\tau(C-H) + c(300-H)$
1 209	1 243	1 211	1 217	(300-H) = (120-H) = 130-H = 160-H)
1 1 7 9	1 190	1 182	1 173	p(500 H) (120 H H SC H H C H)
1 1/2	1 147	1 145	1 1/6	$\mu(3C - H 23C - H 30C - H) - (13C - H)$
1 112	1 120	1 110	1 120	r(C-H) C H-
1 003	1 103	1 003	1 103	$r(C - H) C_{2}H_{2} r(14C - C) r(12C - H 23C - H)$
1 068	1 050	1 070	1 067	$\mu(200-300) = \mu(120-11) = \mu(200-300) = \mu(120-11) = \mu(200-300) = \mu(120-11) = \mu$
1 056	1 041	1 070	1 007	(250 - 360) p(130 - H)
007	1 006	1 024		$w_{as}(350 - H 360 - H)$
551	1 000	075	070	$w_{s}(350 - 11300 - 11)$
	062	515	062	$\frac{1}{200} = \frac{1}{100} \cdot \frac{1}{100} = \frac{1}{100} \cdot \frac{1}$
030	902	030	502	
012	927	535		$a(C - H N - H) \rightarrow a(13C - 16C) = a(23C - H)$
800	300	802	883	$p(C-C) \rightarrow p(13C-16C) = p(23C-H) = (C-C)$
821	830	842	813	(C - H)C - H
807	804	042	015	$\rho(C - \Gamma) = \sigma_{1}(C - \Gamma)C \Gamma$
807	804	800	705	$V_{\rm s}(C-C)_{\rm qu1}, {\rm qu2} \rho(C-H) = 0$
774		772	795	$v_{s}(C-C)_{pi} \delta(qu1, qu2)$
796	707	110		$\nu_{s}(-\tau)_{qul} \rho(s)(-\tau) s(-\tau) \rho(qul, qu2)$
100	679	104		$\rho(\nabla - \mathbf{n}) \nabla_3 \mathbf{n}_5 o(\mathbf{qu}, \mathbf{qu})$
000	072	009		$\nu_{as}(0 - 0)_{qul} \rho(0 - 11 \text{ N} - 11)_{pi}$
047	610	640	627	$\rho(3C-110C-129C-0300-11)$
090 571	010	049	037	$\rho(130 - \Pi 230 - \Pi 300 - \Pi)$
0/1 E 4 7	540	ECO	E Q 4	$\sigma(130-0) \nu(0-0)_{qul}$
ə47	549	269	ə84	$\omega(3\delta \cup H)$

· 法主 ·

云代 -					
		549	541	$ ho(C-H)C_3H_5$ $\delta(qu1) \nu(C-F)$	_
515	513	512		ω (C—C) _{qul} br(pi)	
485	469			$\rho(C-H) C_3 H_5 \delta(qu2)$	
	452	456		$\sigma(C-N)_{pi}$	
	399	392		ρ(6C—F 7C—O 29C—O)	
		374		$\rho(2C-19O) \sigma(C-30O)$	
		339		ρ(14C-23C)	
		328	312	$\omega(C-19O)$	

Note: (1) ν: Stretch; σ: Scissoring; ρ: In-plane-rocking; ω: Out-of-plane-rocking; τ: Torsion-vibration; δ: Deformation-vibration; br: Ringbreath; (2) s: Symmetric; as: Antisymmetric; (3) pi: Pierazine ring; qu: Quinoline

2.2.1 理论计算所得拉曼与红外光谱的对比分析

和大多数有机分子一样,加替沙星分子也具有不完全的 对称性,因而在红外与拉曼光谱中都有反映,故对其理论计 算所得的红外光谱与拉曼光谱(图 3)进行对比分析。

首先,同时具备拉曼活性与红外活性的振动模式在两种 光谱中的峰位有很好的一致性:如 O—H 伸缩振动都位于 3 661 cm⁻¹处;环丙基上 C—H 不对称伸缩振动都位于 3 187 cm⁻¹处;位于 2 958 和 2 870 cm⁻¹处的两个振动峰属于喹啉 环上 C—H 伸缩振动;位于 1 771 cm⁻¹处的振动峰为不饱和 C=O 的伸缩振动;喹啉环上 C—C 伸缩振动则位于 1 446 cm⁻¹处。

图 3 加替沙星理论与实验拉曼光谱比较

Fig. 3 Comparison of DFT-RS (c) and NRS (d) of Gati

另外一些振动峰则只具有单一光谱活性,只在某一种光 谱中出现。以下振动模式只具有拉曼活性:3 460 cm⁻¹振动 峰为哌嗪环上 21N—H 的伸缩振动;1 586 cm⁻¹振动峰主要 是喹啉环上 C—C 非对称伸缩振动,并伴随着 C—O 的伸 缩振动;1297 cm⁻¹振动峰是哌嗪环上 C—H 的面外摇摆振 动,并伴随 30O—H 的面内摇摆振动;环丙基上 C—H 的面 内摇摆振动则位于 541 cm⁻¹处。而只具有红外活性的振动模 式则包括:位于 3 028 cm⁻¹处的哌嗪环与甲氧基上 C—H 伸 缩振动;位于 1 041 和 1 006 cm⁻¹处的环丙基上 C—H 面外 摇摆振动;位于 804 cm⁻¹处的喹啉环上 C—C 伸缩振动。显 然,将两种光谱结合即可获得关于加替沙星分子结构的丰富 而完整的信息。

2.2.2 理论光谱与实验光谱的对比分析

将理论计算所得的光谱与实验测得的光谱进行对比,如 图 4 与图 5 所示。实验测得的拉曼光谱与红外光谱谱峰数量 多、强度明显,说明实验结果较好。通过比较理论光谱与实 验光谱的光谱线型和振动频率发现,大部分谱峰的峰位基本 一致。如哌嗪环上 16C—H 的对称伸缩振动在实验红外光谱 中位于 3 012 cm⁻¹,理论红外光谱中位于 3 011 cm⁻¹;实验 拉曼光谱中位于 3 016 cm⁻¹,理论拉曼光谱中位于 3 011 cm⁻¹。喹啉环上 C—C 伸缩振动在实验光谱中位于 1 616 cm⁻¹(IR),1 614 cm⁻¹(NRS),理论红外和拉曼光谱中都位 于 1 613 cm⁻¹。

个别谱峰存在差异,这些差异主要体现在两方面:其一 为相应峰位不一致:如环丙基上 C一H 的面内摇摆振动在实 验光谱中都位于 1 093 cm⁻¹,而在理论光谱中都位于 1 103 cm⁻¹,峰位波数相差 6 cm⁻¹。其原因可能是实验设备会产生 随机误差,同时量子化学的计算中过多考虑了电子相关的影 响。其二是理论光谱中存在的个别谱峰在实验光谱中没有测 到:如理论光谱中 1 771 cm⁻¹等处的谱峰在实验红外和拉曼 光谱中都没有观测到。这可能是由于理论计算模拟纯理论振 动,而实验中加替沙星以固体粉末形式存在,有分子间作用 力影响。

3 结 论

拉曼光谱是由具有对称分布的键的对称振动引起,而红 外光谱是由分子的不对称振动所引起。利用这两种光谱信息 互补的特性,能够实现有机化合物种类和结构的准确判断。 采用密度泛函理论的方法,结合 Gaussian 可视化软件,对加 替沙星的分子结构进行了优化,计算出其拉曼光谱与红外光 谱,确定了各谱峰的振动模式归属,并与加替沙星分析纯药 品的实验光谱进行了对比分析。该研究为新型喹诺酮类抗生 素的振动光谱检测储备了基础数据,为其在药品残留检测领 域的应用提供参考。

References

- [1] Salahub D R, Zerner M C. Cheminform, 1990, 21(33): https://doi.org/10.1002/chin.199033368.
- [2] Kohn W, Sham L J. Physical Review, 1965, 140(4A): A1133.
- [3] Gao S M, Wang H Y, Zhang B M. Journal of Molecular Structure, 2013, 1038: 95.
- [4] Mehmet K, Leena S, Onkar P, et al. Spectrochimica Acta Part A, 2012, 93: 33.
- [5] Stephens P J, Devlin F J, Chabalowski C F, et al. J. Phys. Chem., 2002, 98(45): 11623.
- [6] Dewar M J S, Rzepa H S. Chemischer Informationsdienst, 1978, 9(17): https://doi.org/10.1002/chin.197817060.
- [7] Frisch M J, Trucks G W, Schlegel H B. Gaussian09 (RevisionB.01). Gaussian, Inc. Wallingford CT, 2010.
- [8] US Department of Commerce. Computational Chemistry Comparison and Benchmark DataBase Release 20 (August 2019) Standard Reference Database 101 National Institute of Standards and Technology.

Raman, IR and DFT Studies of Gatifloxacin

XU Di, FAN Ya, XIN Min-si, LIU Chun-yu, ZHANG Ye, CAI Hong-xing^{*} School of Science, Changchun University of Science and Technology, Changchun 130022, China

Abstract Gatifloxacin is widely used as a fourth-generation fluoroquinolone antibiotic, and it has drug residues in humans and livestock, which endangers everyone's life and health. In order to avoid secondary intake, it is particularly important to be able to detect the presence of gatifloxacin residues in meat products quickly. To this end, this paper uses vibrational spectroscopy combined with density functional theory to provide basic data for the vibrational spectroscopy detection and identification of gatifloxacin and provides a reference for its application in the field of drug detection. The specific research contents and results are as follows: The first step is to construct the molecular structure of gatifloxacin based on Density functional theory (DFT), and optimize the structure by using B3LYP/6-311+G(d) basis set. Calculate its theoretical Raman and infrared spectra. Theoretical calculations show that the gatifloxacin molecule has obvious Raman and infrared activity in the range of 3 $700 \sim 2$ 800 and $1\ 800 \sim 400\ {\rm cm}^{-1}$. The former is mainly the vibration of the upper group of the functional group, and the latter is the fingerprint area. The vibration of the upper button. Due to the superiority of the complementary information of the two kinds of spectral information, firstly, by comparing the theoretical Raman spectrum and the infrared spectrum, the vibration peak frequency of two or only one vibration activity is marked, and the Gaussian view is combined with each of the gatifloxacin molecules. The vibration frequency corresponding to each key is fully attributed, and the spatial structure parameters such as the bond length, bond angle and dihedral angle of the gatifloxacin molecule are given. In the second step, the natural Raman spectroscopy (NRS) and infrared spectroscopy (IR) of Gatifloxacin (Gati) were measured experimentally. The theoretical calculation result error is corrected by the frequency correction factor of 0.977 and compared with the experimental data. In the fingerprint area, the Raman and infrared characteristic peak wave number matching degree are good. The peak wave number difference is mostly in the range of $0 \sim 10$ cm⁻¹. The calculation results are basically consistent with the experimental data. The results provide basic data for the vibrational spectrum detection and identification of gatifloxacin, and provide a reference for its application in the field of drug detection

Keywords Gatifloxacin; NRS; IR; DFT

(Received Apr. 12, 2019; accepted Aug. 19, 2019)

* Corresponding author